Generalized transitive tournaments and doubly stochastic matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Doubly Stochastic Matrices and Linear Preservers

A real or complex n × n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by V the linear space spanned by such matrices. We study the reducibility of V under the group Γ of linear operators of the form A 7→ PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator φ : V → V mapping the set of generalize...

متن کامل

On Generalized Transitive Matrices

Transitivity of generalized fuzzy matrices over a special type of semiring is considered. The semiring is called incline algebra which generalizes Boolean algebra, fuzzy algebra, and distributive lattice. This paper studies the transitive incline matrices in detail. The transitive closure of an incline matrix is studied, and the convergence for powers of transitive incline matrices is considere...

متن کامل

Doubly stochastic matrices of trees

In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...

متن کامل

Random doubly stochastic tridiagonal matrices

Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...

متن کامل

Difference sets and doubly transitive actions on Hadamard matrices

Non-affine groups acting doubly transitively on a Hadamard matrix have been classified by Ito. Implicit in this work is a list of Hadamard matrices with non-affine doubly transitive automorphism group. We give this list explicitly, in the process settling an old research problem of Ito and Leon. We then use our classification to show that the only cocyclic Hadamard matrices developed form a dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1992

ISSN: 0024-3795

DOI: 10.1016/0024-3795(92)90024-5